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Module Overview 

•  Background on NGS  [next-generation sequencing]. 

•  Basic QC of NGS data. 

•  RNAseq analysis. 

-  preparing input data 

-  mapping reads 

-  quantification of genomic features 

- visualization of data 

- comparing samples 



Topic 1 
NGS Background Info 



Illumina Sequencing Technology 
http://www.illumina.com/Documents/products/techspotlights/techspotlight_sequencing.pdf 

Prepare 
sequence 
fragments.  
Ligate 
adapters. 

Dense clusters of 
identical fragments 
are generated. 

GCTGA 

Images converted 
to “reads”. 

Add labeled reversible 
terminators.  Emitted 
fluorescence identifies 
the incorporated base.  
Cleave fluorescent 
dye.  Repeat. 

[Number of cycles = 
read length.]   

1 2 

Attach fragments to 
surface of flow cell. 

Bridge amplification.  Denature 
DS molecule.  Repeat. 



NGS Data Basics:  Single-end vs Paired-end Data 

Prepare 
sequence 
fragments.  
Ligate 
adapters. 

DNA/RNA fragment of known length 

Single-end (SE) sequencing. 

Paired-end (PE) sequencing. 

end 1 

end 2 



Illumina Sequencing Output 

HiSeq 2000 GA IIx MiSeq 

Number of Lanes 16 8 1 

Max. Output 600 Gb 95 Gb 8.5 Gb 

Max. Single-End 
Reads 

3 billion 
[187 million / lane] 

320 million 
[40 million / lane] 

17 million 

Max. Paired-End 
Reads 

6 billion 
[374 million / lane] 

640 million 
[80 million / lane] 

34 million 

Max. Read Length 2 x 100 2 x 150 2 x 250 

* Data from http://www.illumina.com/  

http://www.illumina.com/


Currently, sequencing from NISC 
comes in two standard options... 
 
a) single-end 36mers on the GAIIx 

* 25-35 million reads 
 

b) paired-end 101mers on the HiSeq 
* 175-225 million read pairs 
  [350-450 million reads] 

 
http://www.nisc.nih.gov/ 

Sequencing @ NISC 

Sequencing @ NIEHS 

a) MiSeq:  single-end (50, 300, or 500mers) or paired-end (25, 150, or 250mers) 
* 10-20 million reads 



NGS Data Basics:  FASTQ format, SE data 
@C060CACXX:1:2108:04435:81967 

AGAGAATGGTACAGGTACCAACAACATGCCATATGCATAGAGCAGCACAGAGCAACATAA 

+ 

?@@DDDFFHFFFHJJEHIJIJIGHHHIJJIJJJJJJ@HGHGICBFGCHIECGGGDHACBC 

@C060CACXX:1:1103:08674:67296 

GTGCATTCTTATTTTATAATATTGACTCTATGACTCAAAAATTACAAGTGTTTATAACCC 

+ 

CCCFFFFFHHHGHJIGIIGIGHIGIJJJIJJJIIJIJJJJJJJJJJIJEGGIIJIGIICH 

@C060CACXX:1:1208:18816:38654 

CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGT 

+ 

==>AA@?;?++@<=>AC>BB4,A7,,3?A>4+2?2A<@BBBA7):*111*?0?3:=?A>A 

@C060CACXX:1:1305:16126:134486 

ATCTATTCCTGAACAGGTCAATTTTAATGACTGATTCTTCAATCCGTGGTGGTCGAGATG 

+ 

;>=AAAAABB+@=@C3+?++<,,33<=C<+?77+*:=7*1?A?=3?0:0=A<A3(<AA## 

@C060CACXX:1:1308:04529:41884 

ATTTGCCATCCCTGCATTGTGCGTGGTTTTCAGCAGCTTTTTAACAGGTGTTGTTTTTAT 

+ 

@@<DDDEAFHHFDIGEEGGE9FGHHIA@FGIIGIIGIIJJJJIIIIEHDDBFFBCGHGII 

@C060CACXX:1:2202:06955:98871 

CTGAGATCTTCTTTAATTTCTTTCTTCAGGGACTTGAAGTTTTTATCATACAGATCTTTC 

+ 

BCCDFFFFHHHHHJJJJJJJJJJIJJJIJJJIIJJJGIIFIJJJJJJJJJJIJJJJJJIJ 

@C060CACXX:1:1105:15276:91210 

TAGGAATCAGCGTGAGCTGTATTCTGACGGAGAATCTCTTCTGGTACCAGAAGGTTTGGA 

+ 

?7?>BDD:C3:02@+AE2<3AEEDF++<))?D?DD4BDB9DDIIDBDD49DB;8.48@5@ 

@C060CACXX:1:1301:16367:35650 

CGCTCTCCAAGCTCCTCCTCCTGGCCCTCAGCTTCTGTGGCTTTCTGGTCTTCACCAACC 

+ 

==<;A8A7+?A7?CB9AAACA++++2<?)5@3*1????*0:?=>**00/*9AA43))==A 

@C060CACXX:1:1205:17708:111304 

CTGGTAGTAAAGTAGCTGCATGGAGTTCACCTGCAGTTCGTGCTGCTTGGCGCCGACCCA 

+ 

?@@DABB=CC<,C:ACG4CFE4@E;+<?+<C3CDCFF?91::)0:?<93BG(7;;''58( 

@C060CACXX:1:1208:13509:106734 

GCTTTGTGGTCTTCACCAACCTTTCTCTGCAGAACAACACCATAGGCACCTATCAGCTGG 

+ 

@CCFFFDFHFHHHJIJIJJJJJJJJJIJIIJJJJIIJJJJEHIIJIGIIJJJJJJJIHJG 

@C060CACXX:1:1101:03034:113094 

ATTCTCCGTCAGAATACAGCTCACGCTGATTCCTATTACTGTAGGTGTAATCCTAAATTC 

+ 

@CCFFFFFHHHFHIIIJIHIIIJJIIHIJEIJJGJBHGIGGDDFCDHEFFCIBGICHIIG 

. 

. 

. 

. 

@C060CACXX:1:1305:16126:134486 

ATCTATTCCTGAACAGGTCAATTTTAATGACTGATTCTTCAATCCGTGGTGGTCGAGATG 

+ 

;>=AAAAABB+@=@C3+?++<,,33<=C<+?77+*:=7*1?A?=3?0:0=A<A3(<AA## 

Standard format is 4 lines per read: 

1. Unique read identifier. 

2. Read sequence. 

3. Either read identifier again or a 
placeholder like ‘+’. 

4. Phred-like base quality scores [Q:0-40].   

 Q = -10 log10 (e), where e is the estimated 
probability of a wrong base.  So the probability 
that a base call is an error is… 

* 0.01% if Q=40 

* 0.1% if Q=30 

* 1% if Q=20 

* 10% if Q=10 



NGS Data Basics:  FASTQ format, PE data 
@C060CACXX:1:2108:04435:81967/1 

AGAGAATGGTACAGGTACCAACAACATGCCATATGCATAGAGCAGCACAGAGCAACATAA 

+ 

?@@DDDFFHFFFHJJEHIJIJIGHHHIJJIJJJJJJ@HGHGICBFGCHIECGGGDHACBC 

@C060CACXX:1:1103:08674:67296/1 

GTGCATTCTTATTTTATAATATTGACTCTATGACTCAAAAATTACAAGTGTTTATAACCC 

+ 

CCCFFFFFHHHGHJIGIIGIGHIGIJJJIJJJIIJIJJJJJJJJJJIJEGGIIJIGIICH 

@C060CACXX:1:1208:18816:38654/1 

CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGT 

+ 

==>AA@?;?++@<=>AC>BB4,A7,,3?A>4+2?2A<@BBBA7):*111*?0?3:=?A>A 

@C060CACXX:1:1305:16126:134486/1 

ATCTATTCCTGAACAGGTCAATTTTAATGACTGATTCTTCAATCCGTGGTGGTCGAGATG 

+ 

;>=AAAAABB+@=@C3+?++<,,33<=C<+?77+*:=7*1?A?=3?0:0=A<A3(<AA## 

@C060CACXX:1:1308:04529:41884/1 

ATTTGCCATCCCTGCATTGTGCGTGGTTTTCAGCAGCTTTTTAACAGGTGTTGTTTTTAT 

+ 

@@<DDDEAFHHFDIGEEGGE9FGHHIA@FGIIGIIGIIJJJJIIIIEHDDBFFBCGHGII 

@C060CACXX:1:2202:06955:98871/1 

CTGAGATCTTCTTTAATTTCTTTCTTCAGGGACTTGAAGTTTTTATCATACAGATCTTTC 

+ 

BCCDFFFFHHHHHJJJJJJJJJJIJJJIJJJIIJJJGIIFIJJJJJJJJJJIJJJJJJIJ 

@C060CACXX:1:1105:15276:91210/1 

TAGGAATCAGCGTGAGCTGTATTCTGACGGAGAATCTCTTCTGGTACCAGAAGGTTTGGA 

+ 

?7?>BDD:C3:02@+AE2<3AEEDF++<))?D?DD4BDB9DDIIDBDD49DB;8.48@5@ 

@C060CACXX:1:1301:16367:35650/1 

CGCTCTCCAAGCTCCTCCTCCTGGCCCTCAGCTTCTGTGGCTTTCTGGTCTTCACCAACC 

+ 

==<;A8A7+?A7?CB9AAACA++++2<?)5@3*1????*0:?=>**00/*9AA43))==A 

@C060CACXX:1:1205:17708:111304/1 

CTGGTAGTAAAGTAGCTGCATGGAGTTCACCTGCAGTTCGTGCTGCTTGGCGCCGACCCA 

+ 

?@@DABB=CC<,C:ACG4CFE4@E;+<?+<C3CDCFF?91::)0:?<93BG(7;;''58( 

@C060CACXX:1:1208:13509:106734/1 

GCTTTGTGGTCTTCACCAACCTTTCTCTGCAGAACAACACCATAGGCACCTATCAGCTGG 

+ 

@CCFFFDFHFHHHJIJIJJJJJJJJJIJIIJJJJIIJJJJEHIIJIGIIJJJJJJJIHJG 

@C060CACXX:1:1101:03034:113094/1 

ATTCTCCGTCAGAATACAGCTCACGCTGATTCCTATTACTGTAGGTGTAATCCTAAATTC 

+ 

@CCFFFFFHHHFHIIIJIHIIIJJIIHIJEIJJGJBHGIGGDDFCDHEFFCIBGICHIIG 

. 

. 

. 

. 

@C060CACXX:1:2108:04435:81967/2 

GGGAAATAGTTATTTTAGGAAGTAGAAGATTTTTCTCTTTGTGTCTGAGTCTTTCATTTG 

+ 

??@DDBDEHF>,C:C@EFBCFHG>HHBDGGHD@<EHGGIJJEB1?F4*:BDGG9DGGI?? 

@C060CACXX:1:1103:08674:67296/2 

GTTTTTATACCATTTCTAACACAACATCTTTGCAACAGAAGAATGTGGAATGGTGTTTCT 

+ 

@CCFFFFDHHAFHIIJIHIJJIDIIIGGHIJJEIGIIJHEHIGGIFGIJIFFHBFGHIIG 

@C060CACXX:1:1208:18816:38654/2 

GCTAGAAGAGAATCACAATAATTTGGGCAGATACTTTGCAGGTATGCAGAACCATGAGTT 

+ 

:B844A2AACA?A4<EFGI++AF:FHG92@;E><@C?D?*:00?*BB@BFFF(?DAG>BF 

@C060CACXX:1:1305:16126:134486/2 

ATTTGCCATCCCTGCATTGTGCGTGTTTTTCAGCAGCTTTTTAACAGGTGTTGTTTTTAT 

+ 

:??D1A;;22+2<2CFG?3<,+)+11+)::?C9?41)*9?HG9*?*?8B*??######## 

@C060CACXX:1:1308:04529:41884/2 

ATCTTATTCCTGAACAGGTCAATTTTAATGACTGATTCTTCAATCCGTGGTGGTCGAGAT 

+ 

?B@+4=BDFFHBHGB<E@<+3A?CFBE39<?2ACDGC>DF?CDDDF:FBDDF?@F(<6@A 

@C060CACXX:1:2202:06955:98871/2 

CAATTTCGACAACAAAAGGAGATCAAGGGGATACAAATTGGAAAAGAGGAAGTCAAAATA 

+ 

?BB4AAAD?CFDAFHIEHD?A8AAE?HHIE::?BFE?FAGDEHIBFCGAHA@==@GHEGH 

@C060CACXX:1:1105:15276:91210/2 

CTGCTGGTGTCCATCTGCATCGTGTTCCTCAACAAATGGATCTATGTAGACCACGGCTTC 

+ 

=1?D+=:2222A<,2AGEB?<)<CCC9<AFHEH@):1??C?3**0:0**9?B@(/?@A@) 

@C060CACXX:1:1301:16367:35650/2 

AGTAAAAGTAGCTGCATGGAGTTCACCTGCAGGTCGTGCTGCTTGGCTCCGACCCACACT 

+ 

+:+4+2=A22:+2A+A2A?<A:+<<CB9+<C?)1*:0)?B?B>DD)9*90?:;-;(;(;A 

@C060CACXX:1:1205:17708:111304/2 

GCTTTGTGGGCTTCACCAACCTTTCTCTGCAGAACAACACTATAGGCACCTATCAGCTGG 

+ 

+:++AD22C)1<CAFDGF@G:E<+924C*91**1:3933B***9B*0*97?383BFH))) 

@C060CACXX:1:1208:13509:106734/2 

GCAGGCATGGCAGAAGACATGGGGGCCTGGTAGTAAAGTAGCTGCATGGAGTTCACCTGC 

+ 

BBC+A@DDHFHHFIGIBGGIHJIGHJIIHJ?DGBDGAGBDFGIGIIIGHDCGHIIHCHFH 

@C060CACXX:1:1101:03034:113094/2 

GATAAGTTCACCATGAAAACGATTATTCCAGACAGCAGGACCATAAGCAAAGCAGAAACT 

+ 

=?B=A=2A=C:CD++<CF++333<2+A+AE?9)1):C1)0)?F**900?BF3?F.8BF)/ 

. 

. 

. 

. 

@C060CACXX:1:2108:04435:81967/2 

GGGAAATAGTTATTTTAGGAAGTAGAAGATTTTTCTCTTTGTGTCTGAGTCTTTCATTTG 

+ 

??@DDBDEHF>,C:C@EFBCFHG>HHBDGGHD@<EHGGIJJEB1?F4*:BDGG9DGGI?? 

@C060CACXX:1:2108:04435:81967/1 

AGAGAATGGTACAGGTACCAACAACATGCCATATGCATAGAGCAGCACAGAGCAACATAA 

+ 

?@@DDDFFHFFFHJJEHIJIJIGHHHIJJIJJJJJJ@HGHGICBFGCHIECGGGDHACBC 



Topic 2 
NGS QC 



NGS QC:  Verify the quality of your data. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

There are a number of available NGS QC tools.  My personal favorite is FastQC. 

These apply to all NGS data (not just RNAseq).  Examples of what to look for… 

 * sequence bias of reads relative to reference genome  

 * sequence bias across length of a read 

 * presence of sequencing contaminant, usually the primer/adapter 

 * low uniqueness of reported reads 

 * low base quality scores (i.e. low confidence of correct base calls) 

 * low read count 

Some of these problems can be worked around to salvage some of the data. 

Others indicate that the lane is bad & must be re-run (or a new library is 
needed). 



NGS QC:  Sequence bias relative to reference genome. 

GOOD LANE BAD LANE 

Can this be fixed?   No. 

This plot shows the distribution of GC content per read for all reads in a lane. 

•  x-axis  =  mean GC content (%) 

•  y-axis  =  # of reads 

•  red:  observed read count,  blue:  theoretical distribution (given observed) 

mouse genome ≈ 40% GC 

* * 



NGS QC:  Sequence bias across read length.  (1) 

This plot shows the nucleotide distribution per read position for all reads in a lane. 

•  x-axis  =  position in read (bp) 

•  y-axis  =  % of all reads in the lane 

•  colors refer to individual nucleotides: A, C, G, T 

GOOD LANE BAD LANE 

Can this be fixed?   No. 



NGS QC:  Sequence bias across read length.  (2) 

This lane has a different problem – one sequence motif is highly over-represented. 

Can this be fixed?  Yes.  Simply remove the reads w/adapter contamination, and 
everything that’s left should be fine.  (Talk to a bioinformatics analyst for help.) 

In this lane, ~10% of reads have the adapter sequence & the rest are normal. 

primer/adapter sequence:  GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG 

Note:  This sample underwent bisulfite 
treatment prior to sequencing. 



NGS QC:  Low uniqueness among reported reads. 

This plot shows the degree of duplication for a subset of reads in a lane. 

•  x-axis  =  sequence duplication level 

•  y-axis  =  % duplicates relative to unique reads 

GOOD LANE BAD LANE 

Can this be fixed?   Maybe. 



NGS QC:  Base quality score per read position.  (1) 

This plot shows the base quality score distribution for all reads in a lane, with each 
read position considered independently. 

•  x-axis  =  position in read (bp) 

•  y-axis  =  Phred-like base quality score [pink=0-20,  tan=20-30,  green=30-40] 

•  red bar = median score,   blue line = mean score 

•  yellow box = 25th to 75th percentile,   black whiskers = 10th to 90th percentile 

GOOD/NORMAL 
LANE 



NGS QC:  Base quality score per read position.  (2) 

SALVAGEABLE 
LANE 

 
[trim very bad 
positions from 

the 3’ end] 

FAILED LANE 



Quality Trimming & Filtering Example  [Step 1] 

Most lanes will not have problems with sequence bias, GC content, adapters, etc. 

Most lanes will have reads with base quality problems.  Here is a typical example… 

Note:  Stringency of base qualities to retain is somewhat application-specific.  Talk 
to a bioinformatics analyst for help with your particular experiment/analysis. 

Step 1 = Trimming by base quality. 

My rule of thumb:  Trim reads where the median base quality falls below 20.   



Quality Trimming & Filtering Example  [Step 2] 

Step 2 = Filtering by base quality. 

My rule of thumb:  Retain only reads with an average base quality score ≥ 20. 



Quality Trimming & Filtering Example  [Result] 

AFTER: 

Post-trimming & 
post-filtering 
base quality 
distribution → 

~82% of reads in this 
lane pass this QC filter. 

BEFORE: 

Raw data (i.e. 
untrimmed & 
unfiltered) → 



Quality Trimming & Filtering:  Why Bother? 

Why trim?   Most NGS aligners perform global, not local, alignments – which 
means it attempts to match the reference from base 1 to base N of the read.  If the 
# of base errors exceeds the allowed mismatches, the alignment will be discarded.  
Trimming likely erroneous bases from the end of reads may salvage alignment. 

Why filter?   If there are many erroneous base calls in a read, it could be mapped 
to the wrong place.  More likely, it won’t be aligned at all.  By filtering, you reduce 
the input set to reads you reasonably expect will align to a reference genome… 
so you can more easily determine whether your overall mapping efficiency is 
within normal ranges. 

“This seems like a lot of extra work.  Is it really necessary?” 

How long will this take?   Depending on the size of your raw sequencing files, 
maybe as long as a few hours.  (This is practically nothing relative to how long the 
downstream mapping & analysis tasks will take…) 



Topic 3 
RNA-seq 



http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html 

General Assumption of RNAseq…   

The relative abundance 
of what’s in here…   Biological Sample 

Sequence Library 

…is the same as what’s 
in here. 



What RNAseq can tell you.   

Standard analysis: 

•  genome-wide transcript abundance 

•  differences between individuals, tissues, or treatment conditions 

 - differential abundance 

 - differential isoform usage 

•  discovery of novel isoforms 

 

Other analysis: 

•  de novo transcriptome assembly 

•  allele-specific expression // SNP identification 



RNAseq vs Microarray   

Advantages over microarray: 

•  not limited to what you already know (novel isoforms, novel genes, etc) 

•  bigger dynamic range 

•  can distinguish abundance of different isoforms at the same locus 



Kinds of RNAseq   

There are a number of variations of the “RNAseq” experiment: 

•  mRNA-seq  [polyA enriched protocol] 

•  total RNA-seq 

•  strand-specific RNA-seq 

•  small RNA-seq 

- This is what is typically done at NISC. 

- This is the focus of the rest of this module. 



Two general RNAseq analysis approaches. 

Nat. Biotech 28:421-423. 



RNAseq Analysis, Part 1:  Mapping to Reference Genome 

Primary Challenge:  Mapping across exon juctions. 

•  Some mapping tools don’t allow any gaps, not even a single-base indel. 

•  Some mapping tools can place small indels, but the accuracy of these 
alignments tends to be poor… especially with indels longer than a few bases. 

•  Mapping tools cannot accurately identify large gaps (i.e. introns) in an 
efficient manner.  [At least not yet.] 

Why?  The reads are too short to confidently anchor both sides of an 
alignment… unless the aligner knows “where to look”. 

Isoform 1 

Isoform 2 

mRNA 1 

mRNA 2 

RNAseq read 



Mapping RNAseq reads to a reference genome:  TopHat. 

TopHat will align reads to a reference genome, including mapping across an exon 
junction.  A reference annotation of known genes/transcripts is not required. 

Trapnell et al. 2008. Bioinformatics 25:1105-1111. 
http://tophat.cbcb.umd.edu/ 

1)  Reads that map contiguously to the gene are identified 
first.  These hits are used to define potential exons. 
 
 

2) A database of possible splice junctions is built based on 
those potential exons. 

3) Mapping of the remaining reads against those junctions 
is attempted. 

http://tophat.cbcb.umd.edu/


Bowtie-related options: 

--bowtie1 

--b2-very-fast 

--b2-fast 

--b2-sensitive 

--b2-very-sensitive 

--b2-N 

--b2-L 

--b2-I 

--b2-n-ceil 

--b2-gbar 

--b2-mp 

--b2-np 

--b2-rdg 

--b2-rfg 

--b2-score-min 

--b2-D 

--b2-R 

Junction search options: 

--min-anchor 

--splice-mismatches 

--min-intron-length 

--max-intron-length 

--min-coverage-intron 

--max-coverage-intron 

--min-segment-intron 

--max-segment-intron 

User-defined transcriptome options: 

-G/--GTF 

--transcriptome-index 

-j/--raw-juncs 

--no-novel-juncs 

-T/--transcriptome-only 

-x/--transcriptome-max-hits 

-M/--prefilter-multihits 

Indel control options: 

--max-insertion-length 

--max-deletion-length 

--insertions 

--deletions 

--no-novel-indels 

Fusion-related options: 

--fusion-search 

--fusion-anchor-length 

--fusion-min-dist 

--fusion-read-mismatches 

--fusion-multireads 

--fusion-multipairs 

--fusion-ignore-chromosomes 

--fusion-do-not-resolve-conflicts 

TopHat Parameters 
Required: 

<ref_index>         reference genome indexed for bowtie/bowtie2 

<fastq1>            mate1 reads in FASTQ format 

<fastq2>            mate2 reads in FASTQ format (in same order as mate1 reads) 

--mate-inner-dist   expected (mean) inner distance between mate pairs 

Mapping search/stringency options: 

--bowtie-n 

--segment-length 

--genome-read-mismatches 

--transcriptome-mismatches 

--read-mismatches 

--segment-mismatches 

--allow-partial-mapping 

--max-multihits 

--no-coverage-search 

--coverage-search 

--microexon-search 

Library descriptors: 

--solexa-quals 

--solexa1.3-quals 

--phred64-quals 

--integer-quals 

--library-type 

--mate-std-dev 

--qual 

--color 

--color-out 

Computational/Processing options: 

--num-threads 

--keep-tmp 

--tmp-dir 

--zpacker 

--unmapped-fifo 

Output options: 

--output-dir 

--report-secondary-alignments 

--report-discordant-pair-alignments 

--no-sort-bam 

--no-convert-bam 

--keep-fasta-order 

--rg-id 

--rg-sample 

--rg-library 

--rg-description 

--rg-platform-unit 

--rg-center 

--rg-date 

--rg-platform Talk to a bioinformatics analyst for help… 



Example RNAseq Analysis:  Prep raw data files. 

Sample 
Retained 

Positions in 
Trimmed Mate1 

Retained 
Positions in 

Trimmed Mate2 
All Read Pairs 

Read Pairs 
Passing Filter 

% Passing 
Filter 

male1 1-101 1-101 201,116,634 154,557,046 76.9 

male2 1-101 1-101 190,176,759 168,186,082 88.4 

female1 1-101 1-101 201,411,830 157,440,703 78.2 

female2 1-101 1-101 220,917,100 188,013,701 85.1 

A) Run FastQC to check sequence bias, GC content, etc. 

 (Let’s assume everything is fine here for these lanes.) 

 

B) Trim & filter raw reads.  Since these reads are paired, require both mates to 
pass the average base quality filter @ Q20. 

This example includes 4 PE 101mer lanes from the HiSeq.  There are two 
replicates each of male & female samples.  All data is mouse liver tissue. 



C) Determine estimated fragment size.  Options are… 

 *  use expected size based on library preparation 

 *  empirically determine:  map a subset of reads to a known transcriptome  

Example RNAseq Analysis:  Find fragment size per library. 



D) Select appropriate options/parameters & launch TopHat. 

 Then wait… and wait… and wait.  One lane of HiSeq data will take 2-7 days, 
depending on selected options & server availability. 

Example RNAseq Analysis:  Run TopHat.   (1) 

Output files: 

accepted_hits.bam 

unmapped.bam 

 

deletions.bed 

insertions.bed 

junctions.bed 

 

logs/ 

prep_reads.info 

SAM [Sequence Alignment/Map] 

This is the standard format for aligned NGS data. 
 

BAM = binary version of the same format. 

 

 

 

 

Sample SAM size BAM size 

male1 116 G 23 G 

male2 127 G 24 G 

female1 109 G 23 G 

female2 130 G 25 G 



D) Select appropriate options/parameters & launch TopHat. 

 Then wait… and wait… and wait.  One lane of HiSeq data will take 2-7 days, 
depending on selected options & server availability. 

Example RNAseq Analysis:  Run TopHat.   (2) 

Output files: 

accepted_hits.bam 

unmapped.bam 

 

deletions.bed 

insertions.bed 

junctions.bed 

 

logs/ 

prep_reads.info 

The insertions, deletions, and junctions identified by 
TopHat, in standard BED format. 
For example... 
 
 
 
 
 

track name=insertions description="TopHat insertions" 

chr1    3206248    3206248    T             1 

chr1    4481575    4481575    G             1 

chr1    4678425    4678425    C             2 

chr1    4679317    4679317    CCCAGCGGCT    5 

chr1    4679318    4679318    CCAGCGGCTC    3 

chr1    4761209    4761209    A             3 

Processing info & log files. 
Most users will never look at these. 



TopHat Output (Viewed in UCSC Genome Browser) 

BED & BAM* formats can both be visualized in the UCSC Genome Browser. 

Here is a screen shot for the “male1” sample: 

* BAM files are not uploaded directly, but are instead stored in a web-accessible server location. 
At NIEHS, getting this set up requires the help of the science IT group…  

KEY 

Blue = read mapped to + strand 

Red = read mapped to - strand 

Thin line = read crosses junction 



Visualization of RNAseq Data [UCSC Genome Browser] 

BAM view shows per-read mapping, but is limited to regions with fairly low 
coverage.  Converting to aggregate depth is the more standard visualization. 

[Aggregate coverage tracks can be generated with command-line tools from the 
BEDtools package & UCSC scripts.] 



TopHat Output “Reality Check” 

A quick summary look at the mappings per lane can confirm that the results are 
in the typical ranges for your particular sample type and organism. 

*Estimated average depth assumes transcriptome is 3% of genome size. 

Sample 
Read Pairs 

Passing Base 
Quality Filter 

Reads Passing 
Base Quality 

Filter 

Total Mapped 
Hits 

Avg Hits Per 
Reads 

Avg Depth Per 
Transcriptome 

Position* 

male1 154,557,046 309,114,092 354,893,696 1.1 438x 

male2 168,186,082 336,372,164 392,489,789 1.2 482x 

female1 157,440,703 314,881,406 337,475,059 1.1 415x 

female2 188,013,701 376,027,402 400,658,799 1.1 495x 

Total Mapped Hits  [note:  a given read can be mapped to multiple locations] 

Reads With At Least One Mapped Hit 

Sample 
Read Pairs 

Passing Base 
Quality Filter 

Reads Passing 
Base Quality 

Filter 

Reads With 1+ 
Hits 

% of Reads With 
1+ Hits 

male1 154,557,046 309,114,092 253,058,581 71.6% 

male2 168,186,082 336,372,164 285,502,351 75.4% 

female1 157,440,703 314,881,406 281,728,441 77.9% 

female2 188,013,701 376,027,402 326,951,462 82.2% 



RNAseq Analysis, Part 2:  Quantification. 

Primary Challenge:  Convert mapped fragments to a numerical score for 
abundance. 

FPKM = Fragments Per Kilobase (of transcript) per Million mapped fragments 

Transcript 1 Transcript 2 

mapped 
reads 

The same number of fragments are mapped to each transcript, 
but Transcript1 is twice the length of Transcript2… 

So the FPKM for Transcript1 will be ½ the FPKM for Transcript2. 

-- A method to normalize mapped read counts both by the size of the transcript (or other genomic feature) 
and by the total size of the given lane of data. 



Most Popular RNAseq Quantification Tools 

Cufflinks DEseq 

Tools. 

Cufflinks:  Simultaneously 
evaluates abundance (as FPKM) 
at the gene & transcript levels. 
Cuffdiff:  Simultaneously 
evaluates differential genes, 
isoforms, promoters, splicing, & 
coding sequences. 

DEseq:  Identifies differentially 
expressed genomic features, for 
use at gene level. 
DEXseq:  Identifies differentially 
expressed genomic features, for 
use at exon level. 

Input format. 
No formatting changes 
necessary.  (Part of same suite 
as TopHat/Bowtie.) 

Requires significant pre-
processing to alter input format. 

Platform. Linux/Unix command-line. R package. 

Can find novel 
genes/transcripts? 

Yes.  Defining reference 
annotations is optional. 

No.  Must define reference 
annotations. 

Output. 
Can be difficult to interpret & 
parse. 

Clean, complete, & user-friendly. 

Relative speed. Slower. Faster. 



Quantification Workflow Overview 

Map Reads to 
Reference Genome 

Calculate Abundance 
at Genomic Features 

Identify Differential 
Abundance 

TopHat 

Cufflinks Cuffdiff 

DEseq 

DEXseq 

other 

other 



Cufflinks 

•  Trapnell et al.  2010.  Nat Biotech  28(5):511-515. 

•  Roberts et al.  2011.  Bioinformatics  27(17):2325-2329. 

If you’re interested in learning about the statistics behind how these 
abundance estimations are made, check out these references… 



Cufflinks Parameters 
Required: 

<~.sam/~.bam>       aligned reads in SAM or BAM format 

General Options: 

-o/--output-dir 

-p/--num-threads 

--library-type 

--seed 

-b/--frag-bias-correct 

-u/--multi-read-correct 

-v/--verbose 

-q/--quiet 

--no-update-check 
Abundance Estimation Options: 

-m/--frag-len-mean 

-s/--frag-len-std-dev 

-N/--upper-quartile-norm 

--max-mle-iterations 

--num-importance-samples 

--compatible-hits-norm 

--total-hits-norm 

Assembly Options: 

-L/--label 

-F/--min-isoform-fraction 

-j/--pre-mrna-fraction 

-I/--max-intron-length 

-a/--junc-alpha 

-A/--small-anchor-fraction 

--min-frags-per-transfrag 

--overhang-tolerance 

--max-bundle-length 

--max-bundle-frags 

--min-intron-length 

--trim-3-avgcov-thresh 

--trim-3-dropoff-frac 

--max-multiread-fraction 

--overlap-radius 

Reference-Guided Assembly Options: 

-G/--GTF 

-g/--GTF-guide 

-M/--mask-file 

--no-faux-reads 

--3-overhang-tolerance 

--intron-overhang-tolerance  



A) Select appropriate options/parameters & launch Cufflinks. 

 Then wait.  One lane of mapped HiSeq data will take several hours (if 
reference-guided) or a few days (if not referenced-guided). 

Example RNAseq Analysis:  Run Cufflinks. 

Output files: 

genes.fpkm_tracking  

isoforms.fpkm_tracking 

transcripts.gtf 

These files include the FPKM calculated for 
each gene or each transcript/isoform that is 
either included in the reference annotations (if 
provided) or was identified by cufflinks (if no 
reference annotation is provided). 

Genomic locations of all evaluated transcripts in a standard format (GTF). 

If reference annotations were provided, these entries should match the input file. 

If no reference annotations were provided, each entry has some mapped-read 
support according to the cufflinks algorithm. 



Reference-Guided Cufflinks Quantification  (1) 

Comparison between lanes is straightforward because each sample is evaluated 
over exactly the same genomic features. 

Example query:  What is overall correlation between sample pairs? 

The x- and y-axis are FPKM 
(0 to 100). 
 
Each point is one gene. 
N=22,370 genes 
 
Color intensity in the plot 
indicates density of points.  
(e.g. bright spot in lower left 
corner = many genes with FPKM 
near zero for both samples) 

male1 male2 female1 female2 

male1 

male2 

female1 

female2 

R = 0.943 
ρ = 0.985 

R = 0.599 
ρ = 0.975 

R = 0.846 
ρ = 0.976 

R = 0.587 
ρ = 0.976 

R = 0.805 
ρ = 0.976 

R = 0.855 
ρ = 0.981 



Reference-Guided Cufflinks Quantification  (2) 

Example query:  What is distribution of calculated abundance (FPKM) per gene? 

~10% of genes have FPKM ≥ 20 

~55% of genes have a non-zero FPKM 



Cuffdiff Parameters 
Required: 

<transcripts.gtf>   genomic features to evaluate, must be in GTF format 

<~.sam/~.bam>       aligned reads in SAM/BAM format [one per sample to compare] 

General Options: 

-o/--output-dir 

-T/--time-series 

-c/--min-alignment-count 

--FDR 

--library-type 

-M/--mask-file 

-b/--frag-bias-correct 

-u/--multi-read-correct 

-N/--upper-quartile-norm 

-L/--labels 

-p/--num-threads 

--seed 

-m/--frag-len-mean 

-s/--frag-len-std-dev 

--num-importance-samples 

--num-bootstrap-samples 

--bootstrap-fraction 

--max-mle-iterations 

--compatible-hits-norm 

--total-hits-norm 

--poisson-dispersion 

--no-update-check 

--emit-count-tables 

--max-bundle-frags 

-v/--verbose 

-q/--quiet 

With a slight adjustment to the input syntax, you can… 

(a) consider all samples to be independent 

 

 

(b) group replicate samples to be considered together 

{list of SAM/BAM files} =  

male1.bam   male2.bam  female1.bam  female2.bam 

General syntax: 

cuffdiff [options] <transcripts.gtf> {list of SAM/BAMs} 

{list of SAM/BAM files} =  

male1.bam,male2.bam  female1.bam,female2.bam 



Example RNAseq Analysis:  Run Cuffdiff. 

A) Select appropriate options/parameters & launch Cuffdiff. 

 Then wait.  Processing time depends on how many samples you are 
comparing;  in general, run time is on the order of several hours. 

Output files: 

genes.fpkm_tracking 

isoforms.fpkm_tracking 

tss_groups.fpkm_tracking 

cds.fpkm_tracking 

cds.diff 

cds_exp.diff 

gene_exp.diff 

isoform_exp.diff 

promoters.diff 

splicing.diff 

tss_group_exp.diff 

Similar to the Cufflinks output, these files 
include the FPKM calculated for each entry 
of a given feature type (gene, isoform, etc). 

These files include evaluations (including 
significance tests) for differential abundance 
of each entry of a given feature type. 



Identifying Differential Abundance from Cuffdiff Output 

Example query:  What genes are differentially expressed in males & females? 

Gene Locus Sample1 Sample2 Status FPKM 1 FPKM 2 
log2 (fold 
change) 

p-value q-value Significant 

Lypla1|18777 chr1:4797973-4836816 q1 q2 OK 128.663 109.135 -0.23748 0.39102 0.65021 no 

Tcea1|21399 chr1:4847774-4887990 q1 q2 OK 32.4786 29.7907 -0.12463 0.43895 0.68807 no 

Atp6v1h|108664 chr1:5073253-5152630 q1 q2 OK 39.8703 41.4543 0.05621 0.82256 0.92118 no 

Oprk1|18387 chr1:5578573-5596214 q1 q2 NOTEST 0 0 0 1 1 no 

Rb1cc1|12421 chr1:6204742-6266185 q1 q2 OK 12.0806 14.6324 0.276475 0.27665 0.54847 no 

The genes_exp.diff file can be loaded in Excel.  Here are the first few rows… 

Sort by q-value (i.e. FDR-adjusted P-value) to find most significant differences in gene 
abundance between males & females.  Here are a few somewhat-randomly selected rows… 

Gene Locus Sample1 Sample2 Status FPKM 1 FPKM 2 
log2 (fold 
change) 

p-value q-value Significant 

Xist|213742 chrX:100626855-100680296 q1 q2 OK 0.0059 27.1334 12.1752 0 0 yes 

Lcn2|16819 chr2:32240156-32243259 q1 q2 OK 10.1613 61.264 2.59196 0 0 yes 

Ddx3y|26900 chrY:597157-623056 q1 q2 OK 21.5434 0 -1.8e+308 4.74E-20 5.12E-18 yes 

Rpl14|67115 chr9:120480633-120483770 q1 q2 OK 69.7858 166.507 1.2546 1.14E-06 3.07E-05 yes 

Insc|233752 chr7:121889279-121993894 q1 q2 OK 5.8597 2.7581 -1.0872 7.23E-05 0.00126 yes 



Example:  Gene=Lcn2;  q-value=0 

female1 

female2 

male1 

male2 

FPKM ~10 

FPKM ~60 



Example:  Gene=Rpl14;  q-value = 3.07 x 10-5  

FPKM ~70 

FPKM ~170 

female1 

female2 

male1 

male2 

??? 



Quantification Workflow Overview 
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Example RNAseq Analysis:  Run DEseq. 

A) First, re-format your data.  You have a collection of SAM/BAM files.  DEseq expects you to 
input a table of read counts per gene per sample, like this:  

 

 

 

 

 

B) Open an R session.  Load your data.  Run DEseq.  Extract differentially expressed genes 
according to some defined FDR… 

Notable differences from Cufflinks/Cuffdiff:   

1. All counts are collapsed at the gene level.  DEseq doesn’t handle anything 
more complicated, such as estimating different isoforms. 

2. All features to be evaluated must be explicitly defined in the input.  DEseq 
can’t find novel genes or isoforms. 

gene male1 male2 female1 female2 

Aldoart1|353204 12 10 11 17 

Aldoart2|79459 0 0 0 10 

Aldoa|11674  27244 30883 37535 36595 

Aldob|230163 1031063 1308909 1561614 1509842 

Aldoc|11676 4124 5266 3919 4381 



Identifying Differential Abundance from DEseq Output 

Example query:  What genes are differentially expressed in males & females? 

After writing the DEseq output to a text file, it can be loaded in Excel. 
Sort by adjusted p-value (“padj”) to find most significant differences in gene abundance 
between males & females.  Here are the top few rows… 

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj 

Sult3a1|57430 69830.831 15.293 139646.368 9131.199 13.157 4.44E-206 8.38E-202 

Xist|213742 49518.476 16.928 99020.023 5849.322 12.514 3.13E-193 2.95E-189 

Ddx3y|26900 10794.665 21589.331 0 0 -Inf 5.58E-179 3.51E-175 

Gm4794|215895 4895.007 0 9790.0135 Inf Inf 2.49E-144 1.18E-140 

Hsd3b5|15496 45776.696 91180.364 373.0285 0.004 -7.933 2.05E-121 7.73E-118 

Uty|22290 1721.710 3443.419 0 0 -Inf 2.50E-112 7.86E-109 

Kdm5d|20592 1597.569 3195.137 0 0 -Inf 1.38E-109 3.72E-106 

Cyp4a12a|277753 77345.359 153271.492 1419.226 0.009 -6.755 4.94E-99 1.17E-95 

LOC622167|622167 1174.710 2349.421 0 0 -Inf 3.54E-97 7.42E-94 

Acot3|171281 14879.391 272.421 29486.362 108.238 6.758 2.44E-93 4.60E-90 



Comparison of Differential Abundance Identified via 
Cuffdiff and DEseq 

Despite that the Cuffdiff & 
DEseq approaches to identifying 
differential genes have different 
underlying statistical models, 
the overall agreement between 
the methods is reasonably good. 

male vs female 
Cuffdiff = 1843 genes  [blue] 
DEseq = 975 genes      [yellow] 

1038 805 170 

overlap 
44% of Cuffdiff 
83% of DEseq  

FDR = 0.05 
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Example RNAseq Analysis:  Run DEXseq. 

A) First, re-format your data.  You have a collection of SAM/BAM files.  DEXseq expects you 
to give it read counts per exon per sample.  This table demonstrates the necessary 
information (although in the wrong format)...  

 

 

 

 

 

B) Open an R session. Load your data.  Run DEXseq to compare exon usage across samples. 

How is DEseq different than DEXseq? 

* DEseq evaluates independent genomic features – typically used for 
gene-level analysis. 

* DEXseq is designed specifically to evaluate differential exon usage. 

gene exon chr start end strand male1 male2 female1 female2 

Abhd8|64296 E001 chr8 73,980,599 73,981,276 - 130 107 177 157 

Abhd8|64296 E002 chr8 73,981,937 73,982,153 - 42 47 49 58 

Abhd8|64296 E003 chr8 73,982,277 73,982,447 - 41 36 26 30 

Abhd8|64296 E004 chr8 73,985,145 73,985,871 - 86 62 32 41 

Abhd8|64296 E005 chr8 73,987,365 73,987,556 - 43 16 3 13 



Identifying Differential Abundance from DEXseq Output 

Example query:  What exons are differentially expressed in males & females? 

geneID exonID testable adj P-value chr start end strand transcripts 

Comt|12846 E001 TRUE 0.087 chr16 18,406,975 18,408,133 - 
NM_007744; 

NM_001111062; 
NM_001111063 

Comt|12846 E002 TRUE 0.850 chr16 18,410,776 18,410,907 - 
NM_007744; 

NM_001111062; 
NM_001111063 

Comt|12846 E003 TRUE 0.641 chr16 18,411,220 18,411,413 - 
NM_007744; 

NM_001111062; 
NM_001111063 

Comt|12846 E004 TRUE 0.143 chr16 18,411,783 18,412,050 - 
NM_007744; 

NM_001111062; 
NM_001111063 

Comt|12846 E005 TRUE 1.07E-09 chr16 18,413,359 18,413,587 - NM_001111063 

Comt|12846 E006 TRUE 0.194 chr16 18,424,397 18,424,453 - NM_001111062 

Comt|12846 E007 TRUE 0.014 chr16 18,426,449 18,426,809 - 
NM_007744; 

NM_001111062 

For each exon in the reference set, DEXseq reports a P-value for significance of differential 
abundance.  For example… 

* 

? 



Example:  Gene=Comt 
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Example:  Gene=Comt 

male1 

male2 

female1 

female2 

Fold change:  ~20x 
adj P-value:  ~10-9 

[E005] 

Fold change:  ~2.5x 
adj P-value:  0.014 

[E007] 



Identifying Differential Abundance from DEXseq Output 

Not all differentially expressed exons are as easy to interpret… 

geneID exonID testable adj P-value chr start end strand transcripts 

Rgs16|19734 E001 TRUE 0.309 chr1 155,587,483 155,587,642 + NM_011267 

Rgs16|19734 E002 TRUE 0.698 chr1 155,587,993 155,588,103 + NM_011267 

Rgs16|19734 E003 TRUE 0.388 chr1 155,588,750 155,588,811 + NM_011267 

Rgs16|19734 E004 TRUE 0.894 chr1 155,589,093 155,589,259 + NM_011267 

Rgs16|19734 E005 TRUE 2.91E-05 chr1 155,590,764 155,592,598 + NM_011267 

0

500

1,000

1,500

2,000

2,500

E001 E002 E003 E004 E005* 



Identification of Novel Genes & Isoforms By Cufflinks 

If Cufflinks is run without a set of reference annotations (genes & transcripts), it 
will attempt to identify transcripts from the mapped sequence data. 

Output files: 

genes.fpkm_tracking  

isoforms.fpkm_tracking 

transcripts.gtf 

These files include the FPKM calculated for 
each gene or each transcript/isoform that is 
identified by cufflinks. 

Genomic locations of all identified transcripts in a standard format (GTF). 

Each entry has some mapped-read support according to the cufflinks algorithm. 

Identify which features are novel by comparing this file 
against a set of known reference features… 



Cufflinks (Sometimes) Finds Similar Gene Model to RefSeq 

female2 

For many loci, Cufflinks is able to reconstruct a gene model very similar to RefSeq. 

Example:  Gene=Orm2 

Cufflinks → 

RefSeq→ 



Cufflinks (Sometimes) Finds Potential Novel Genes 

female2 

female2 

Cufflinks → 

RefSeq→ 

Cufflinks → 

RefSeq→ 



Tools Discussed Today 

FastQC 
One of many available options for performing QC evaluations.  (Bonus:  You can 
run this in Galaxy.  Check out Tom Randall’s Galaxy course for a demo!) 

TopHat 
The current gold standard for mapping RNAseq reads to a reference genome. 

Cufflinks/Cuffdiff 
A popular quantification tool, part of the same tool suite as TopHat. 

Does not require reference annotations (i.e. can find potentially novel genes & 
isoforms). 

DEseq/DEXseq 
Another popular quantification tool.  These are 2 related R packages. 

Considered by many to be statistically superior to Cufflinks/Cuffdiff. 

Requires user-defined genomic features, so won’t find anything novel. 
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